Abstract

For the study of the parametric vibration response of submerged floating tunnel tether under random excitation, a nonlinear random parametric vibration equation of coupled tether and tube of submerged floating tunnel is set up. Subsequently, vibration response of tether in the tether-tube system is analyzed by Monte Carlo method. It may be concluded that when the tube is subjected to zero-mean Gaussian white noise random excitation, the displacement and velocity root mean square responses of tether reach the peak if the circular frequency of tube doubles that of tether; the displacement and velocity root mean square responses of tether increase as the random excitation root mean square increases; owing to the damping force of water, the displacement and velocity root mean square responses of tether decrease rapidly compared with tether in air; increasing the damping of the tether or tube reduces the displacement and velocity root mean square responses of tether; the large-amplitude vibration of tether may be avoided by locating dampers on the tether or tube.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call