Abstract

Parameter estimation for devices containing or supporting quantum systems is a field of quantum metrology using quantum probe states to reach their characterization. Pauli channels are ideal structures where qubits are transmitted or contained, commonly altering them with specific fingerprints. The ultimate limit imposed on such estimation is addressed using the quantum Fisher information, stating a lower bound for it. Although the most simple scheme suggests performing such an estimation directly using the individual channel, other approaches have shown improved outcomes by repeating identical copies of the channel for the characterization, or otherwise those connected inside of specific circuit arrangements. These connections commonly include path superposition or causal indefinite architectures. In addition, other improvements have been observed in concrete channels when complementary unitary controls are included. The current research analyses the complete set of Pauli channels under some of those architectures in a comparative approach to reach a better estimation, thus stating hierarchies. It is observed that the use of those unitary controls notably improves previous outcomes by several orders of magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call