Abstract

Aerodynamic Performance of a centrifugal fan with additionally installed splitter blades in the impeller has been investigated numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The shear stress transport turbulence model and hexahedral grids system were used to analyze the flow in the centrifugal fan. From results of the flow analysis, considerable energy loss by flow separation was observed in the blade passages. Splitter blades were applied between the main blades to reduce the loss and enhance fan performance. The chord length ratio of splitter to main blade, the angle between splitter and main blade, and the height ratio of outlet and inlet of impeller were selected as the geometric parameters, and their effects on the aerodynamic performance of the centrifugal fan have been investigated. The performance of the centrifugal fan with added splitter blades was improved conspicuously compared to the centrifugal fan without splitter blades. It was found that the installation of splitter blades in the impeller is effective to improve the aerodynamic performance of a centrifugal fan by reducing the flow separation generated between main blades in the impeller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call