Abstract

Periodic fully developed fluid flow and heat transfer characteristics are obtained numerically for turbulent flow over three-dimensional arrays of heated square blocks deployed along one wall of a parallel-plate duct. This configuration simulates forced convection cooling of electronic equipment. The high Reynolds number form of the k-ε turbulence model is used for the computations. The computations are performed for the condition of uniform wall temperature, for a wide range of geometric parameters characterizing the array, for a range of Reynolds numbers from 10 4 to 10 5, and for Prandtl number of 0.7. The results show that the friction factor is higher or lower than the values obtained from an empirical correlation for a parallel-plate duct depending on the geometric parameters and the Reynolds number. The cycle averaged Nusselt number is also higher or lower than the analytical values for a parallel-plate duct with one wall heated at a constant rate and the other wall insulated depending on the geometric parameters and the Reynolds number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call