Abstract

The present work utilizes Molecular Dynamics (MD) method to study the physical mechanism of the effect of hybrid deposited nanoparticles (HDNs) on the boiling heat transfer by changing the wettability of the substrate. Three kinds of nanofluid simulation models are established, in which water molecules are used as the base fluid, and nanoparticles are hydrophilic deposited particles, hydrophobic deposited particles and HDNs, respectively. Compared with hydrophilic and hydrophobic deposited nanoparticles, it is found that the equilibrium contact angles of droplet containing HDNs decreases by 2.22° and 6.99° respectively during wetting simulation, indicating that HDNs improve the wettability of the substrate. By simulating the boiling process of three fluids, it is found that HDNs advance the start time of explosive boiling by 0.15 ns at most, that is, accelerate the nucleation time of bubbles, and increase the heat flux by 46.9 % at most, indicating that the heat convection near the substrate is enhanced. In addition, HDNs improve the vibration matching degree of atoms between the solid-liquid interface and enhance the heat transfer between the substrate and the fluid. The results of boiling simulation verify the conclusion that HDNs improve the wettability of the substrate and thus enhance the heat transfer inferred by droplet wetting simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.