Abstract

The dynamics of fractional-order systems have attracted a great deal of attention in recent years. In this paper, the effects of parameter changes on the dynamics of the fractional-order Chen–Lee system were studied numerically. The parameter ranges used were relatively broad. The order used for the system was fixed at 2.7 ( q 1 = q 2 = q 3 = 0.9). The system displays rich dynamic behaviors, such as a fixed point, periodic motion (including period-3 motion), chaotic motion, and transient chaos. The chaotic motion identified was validated by the confirmation of a positive Lyapunov exponent. Period-doubling routes to chaos in the fractional-order Chen–Lee system were also found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.