Abstract
Laser-based proton beam acceleration, which produces broad energy spectra, is unsuitable for direct clinical use. Thus, employing an energy selection system is necessary. The purpose of the present study was to investigate a method whereby a variable magnetic field could be employed with an energy selection system to generate a spread-out Bragg peak (SOBP). For energy selection, particle transport and dosimetric property measurements, the Geant4 toolkit was implemented. The energy spectrum of the laser-accelerated proton beam was acquired using a particle-in-cell simulation. The hole size and the position of the energy selection collimator were varied in order to determine the effects of those parameters on the dosimetric properties. To generate an SOBP, we changed the magnetic field in the energy selection system for each beam weighting factor during beam irradiation. The overall results of this study suggest that the use of an energy selection system with a variable magnetic field can effectively generate an SOBP suitable for proton radiation therapy applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.