Abstract

Topology optimization has recently been investigated as a technique for the conceptual design of efficient structures during the early stage of the design of buildings to tackle the design challenges. The use of this technique, which leads to optimum structures, mostly results in esthetic, lightweight, and best performance from the perspective of engineers or architects. However, the topology optimization results are not usually known for direct realization in practice, and the engineer and architect should be able to choose the best solution among numerous choices in close cooperation. This paper has focused on defining a parametric framework of continuous optimum design of lateral bracing systems for tall buildings considering wind and gravity loads. The bidirectional evolutionary structural optimization (BESO) method was employed, considering the main optimization parameter, loading scenarios, and constraints. In order to show the effectiveness of the suggested topology optimization framework for minimizing compliance (maximizing stiffness) and minimum consumption of materials in the design of lateral bracing systems, 2D and 3D systems have been discussed. According to the obtained results, this framework could employ topology optimization during the conceptual design to seek a new definition of the optimum layout of lateral bracing systems with high structural performance, elegant geometries, and other characteristics considered by architects and engineers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.