Abstract

This paper is related to the development of signal processing techniques for automatic recognition of bird species. Three different parametric representations are compared. The first representation is based on sinusoidal modeling which has been earlier found useful for highly tonal bird sounds. Mel-cepstrum parameters are used since they have been found very useful in the parallel problem of speech recognition. Finally, a vector of various descriptive features is tested because such models are popular in audio classification applications, and bird song is almost like music. We briefly introduce the methods and evaluate their performance in the classification and recognition of both individual syllables and song fragments of 14 common North-European Passerine bird species

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.