Abstract
Complete assessment of biventricular function from planar ECG-gated cardiac blood pool studies has been limited because of the overlap of adjacent activity-containing structures. Theoretically, single-photon emission tomography (SPET) can be used to comprehensively evaluate both ventricles by isolating them from surrounding anatomy. However, an enormous amount of parametric data is generated from gated SPET studies, and much of it is diagnostically irrelevant for ventricular wall motion analysis. To compress this information to a more easily interpretable format, a two-dimensional parametric display has been developed. Fourier analysis of short-axis tomograms from a gated cardiac blood pool SPET study generates three-dimensional, first-harmonic phase data. Circumferential profile data from the parametric tomograms of the right and left ventricle are mapped onto a two-dimensional polar display. This method is demonstrated in a normal patient and in three patients with abnormal ventricular contraction patterns and appears to have potential application for the analysis and characterization of biventricular wall motion.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have