Abstract

Abstract Continuous drive friction welding was employed to join the aeronautic aluminum alloy 2024. Parametric optimization and microstructural characterization were investigated. Results show that friction pressure is the most significant factor influencing the tensile strength of joints. To obtain a high joint efficiency, the combination of moderate friction pressure, less friction time and higher upset pressure is recommended. The optimized joint efficiency from Taguchi analysis reaches 92% of base metal. Under the optimized experimental condition, the interfacial peak temperature is calculated analytically in the range of 779−794 K, which is validated by experimental data. Fine recrystallized grains caused by the high temperature and plastic deformation are observed in the friction interface zone. The grain refinement is limited in the thermo-mechanically affected zone, where most of matrix grains are deformed severely. The extensive dissolution and limited re-precipitation of strengthening phases result in a lower microhardness in the friction interface zone than that in the thermo-mechanically affected zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.