Abstract

Breast Cancer is the leading form of cancer found in women and a major cause of increased mortality rates among them. However, manual diagnosis of the disease is time-consuming and often limited by the availability of screening systems. Thus, there is a pressing need for an automatic diagnosis system that can quickly detect cancer in its early stages. Data mining and machine learning techniques have emerged as valuable tools in developing such a system. In this study we investigated the performance of several machine learning models on the Wisconsin Breast Cancer (original) dataset with a particular emphasis on finding which models perform the best for breast cancer diagnosis. The study also explores the contrast between the proposed ANN methodology and conventional machine learning techniques. The comparison between the methods employed in the current study and those utilized in earlier research on the Wisconsin Breast Cancer dataset is also compared. The findings of this study are in line with those of previous studies which also highlighted the efficacy of SVM, Decision Tree, CART, ANN, and ELM ANN for breast cancer detection. Several classifiers achieved high accuracy, precision and F1 scores for benign and malignant tumours, respectively. It is also found that models with hyperparameter adjustment performed better than those without and boosting methods like as XGBoost, Adaboost, and Gradient Boost consistently performed well across benign and malignant tumours. The study emphasizes the significance of hyperparameter tuning and the efficacy of boosting algorithms in addressing the complexity and nonlinearity of data. Using the Wisconsin Breast Cancer (original) dataset, a detailed summary of the current status of research on breast cancer diagnosis is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.