Abstract

Tunnel construction often relies on drilling and blasting. High dust pollution is one of the primary problems of drilling and blasting construction. The level of secondary blown dust pollution caused by ventilation matches that of dust pollution caused by drilling construction. In this study, a critical flow model and blown dust rate model for deposited dust were established via force analysis, which was validated against the test data. The research results showed that the characteristic airflow velocity for blowing dust particles with a 100 μm diameter reached approximately 0.42 m/s for tunnel diameter is 10 m, and the ventilation Re values under smooth and rough conditions were 2.3 × 105 and 1.4 × 105, respectively. Furthermore, when ventilation Re reached 4 × 105, the blown dust pollution rate caused by ventilation under smooth conditions was approximately 1.8 × 10−2 kg/s. If dust particle size is more or less the critical dust particle size, the characteristic airflow velocity was increased. Moreover, the optimal velocity at which the deposited dust does not flow or move during tunnel construction was related to the tunnel size and roughness. For the smooth tunnel with a diameter of 10 m, the optimal ventilation velocity was 3.5 m/s. When the tunnel roughness was increased from 0.005 to 0.5 m, the optimal ventilation velocity decreased from 3.3 to 1.6 m/s. The deposited dust critical flow model and blown dust pollution rate model established in this study provide a sound theoretical basis for selecting the optimal velocity of tunnel ventilation and recognizing the risks of secondary blown dust pollution due to ventilation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.