Abstract

In order to reduce the blasting dust concentration in the tunnel during the drilling and blasting, accelerate the tunnel excavation process, and improve the working environment for the construction workers, a three-dimensional geometric model of dust transport was established based on the gas-solid two-phase flow model using the DesginModeler software, and the discrete phase model (DPM) in the FLUENT software was used to simulate the variation of dust concentration and the distribution of dust particle size at different locations along the tunnel route within 1200 s after tunnel blasting. The results showed that the concentration of blasting dust gradually decreased over time, with the fastest decrease in the range of 2 s to 120 s, and after 900 s, the dust concentration stabilized. The overall spatial distribution of the dust concentration showed a trend of decreasing from the palm face to the tunnel entrance and from the bottom plate to the upper part. The distribution pattern of dust with different particle sizes was not the same along the length of the tunnel. The large particles settled in the area of 25 m from the palm face under the action of gravity. With the increases of distance, the mass flow rate decreased, and the dust particle size became smaller, but the proportion of small particles gradually increased, while the R-R distribution index increased. The results in this study were confirmed to be reliable by comparing the measured data to provide guidance for the dust reduction technology in tunnel blasting, so as to quickly remove the dust generated during the blasting process and improve the engineering construction efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call