Abstract

Photovoltaic (PV) systems work efficiently up to a certain cell temperature and exhibit efficiency losses and long-term degradation if the cell temperature exceeds a certain limit. The rise in temperature can be controlled with the help of cooling techniques to maintain cell temperature within limit. In the current research, a novel cooling technique termed earth water heat exchanger (EWHE) is designed and simulated by varying its operating parameters, which includes mass flow rate, length, pipe materials, and diameter of buried pipe. Results showed that peak PV panel temperature goes up to 79.31 °C without any cooling and drops to 47.13 °C with the help of EWHE cooling for optimum flow rate of 0.018 kg/s. At this flow rate, with decrease in panel temperature, the PV power also increased by 23.16 W with EWHE cooling. The comparative study between three different EWHE pipe material shows that the performance of coupled (PV/T + EWHE) system hardly depends on the properties of these materials. It is also observed that there is an inverse correlation between the EWHE pipe length. The variation in pipe diameter shows that the PV temperature decreases with an increase in pipe diameter. The PV/T system along with EWHE may be used for the purpose of PV power plants cooling in the hot and semi-arid regions of western Gujarat and Rajasthan (India), where solar irradiation is ample and ambient temperatures are very high.

Highlights

  • Solar energy is considered as one of the most promising renewable energy sources due to the fact that it is widely available all over the world and is being used to generate electricity (Ummadisingu and Soni 2011; Gakkhar et al 2016)

  • The performance of earth water heat exchanger (EWHE) and PV/T system is analysed by varying different parameters, which includes the type of pipe material, length, diameter of pipe, and mass flow rate of water

  • The present paper discusses the analysis of unglazed PV/T-coupled EWHE system by varying different parameters, such as buried pipe diameter, pipe material, pipe length, and flow rate

Read more

Summary

Introduction

Solar energy is considered as one of the most promising renewable energy sources due to the fact that it is widely available all over the world and is being used to generate electricity (Ummadisingu and Soni 2011; Gakkhar et al 2016). PV systems are commercially proven technology for electrical power generation from solar radiation. Only 10–20 % of incident solar radiation is converted into electrical energy, while the remaining radiation is absorbed as heat (Ozgoren et al 2013). The absorbed radiation which is converted into heat results in an increase in the PV cells operating temperature. The rise in cell temperature beyond certain limit adversely impacts the efficiency and the life span of the cell (Jakhar et al 2016b, c; Royne et al 2005; Cabo et al 2016). The PV electrical efficiency is highly dependent on the cell-operating temperature, and decreases

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.