Abstract

Rough set is mainly concerned with the approximations of objects through an equivalence relation on a universe. Matroid is a generalization of linear algebra and graph theory. Recently, a matroidal structure of rough sets is established and applied to the problem of attribute reduction which is an important application of rough set theory. In this paper, we propose a new matroidal structure of rough sets and call it a parametric matroid. On the one hand, for an equivalence relation on a universe, a parametric set family, with any subset of the universe as its parameter, is defined through the lower approximation operator. This parametric set family is proved to satisfy the independent set axiom of matroids, therefore a matroid is generated, and we call it a parametric matroid of the rough set. Through the lower approximation operator, three equivalent representations of the parametric set family are obtained. Moreover, the parametric matroid of the rough set is proved to be the direct sum of a partition-circuit matroid and a free matroid. On the other hand, partition-circuit matroids are well studied through the lower approximation number, and then we use it to investigate the parametric matroid of the rough set. Several characteristics of the parametric matroid of the rough set, such as independent sets, bases, circuits, the rank function and the closure operator, are expressed by the lower approximation number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call