Abstract

In brain research, the hCMEC/D3 cell line is widely used for the establishment of a human in vitro blood-brain barrier (BBB) model. However, its barrier integrity seems to be insufficient for drug permeability studies, represented by rather low transendothelial electrical resistance (TEER) and high permeability of small molecules. Therefore, this study covers a parametric investigation of static and dynamic cell culture conditions to improve barrier functionality of hCMEC/D3. The effect of basal media was investigated by analyzing changes in proliferation rate, barrier integrity and gene expression of cellular junction proteins. The cells were able to grow in different cell culture media, including serum-free media. However, none of these media enhanced strongly the growth rate or barrier integrity compared to the microvascular endothelial cell growth medium-2 (EGM™-2 MV). Furthermore, hCMEC/D3 cells did not respond positively regarding TEER to any tested parameter neither supplements, coating materials nor co-cultures with the human immortalized astrocyte cell line SVGmm. Furthermore, the impact of dynamic conditions was examined by using the Dynamic Micro Tissue Engineering System (DynaMiTES). Cultivation conditions were successfully adapted to the DynaMiTES design and no negative effect was detected by analyzing cell viability and cell count, albeit TEER remained also unchanged. Consequently, the hCMEC/D3 model has considerable limitations and further improvements or alternative cell lines are required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.