Abstract

Nitric oxide is a chemical agent produced by endothelial cells in a healthy blood vessel, inhibiting the overgrowth of vascular smooth muscle cells and regulating vessel tone. Liposomes are biocompatible and biodegradable drug carriers with a similar structure to cell bilayer phospholipid membrane that can be used as useful nitric oxide carriers in vascular grafts. Using a custom-designed apparatus, the sheep carotid arteries were decellularized while still maintaining important components of the vascular extracellular matrix (ECM), allowing them to be used as small-diameter vascular grafts. A chemical signal of sodium nitrite was applied to control smooth muscle cells' behavior under static and dynamic cell culture conditions. The thin film hydration approach was used to create nano-liposomes, which were then used as sodium nitrite carriers to control the drug release rate and enhance the amount of drug loaded into the liposomes. The ratio of 80:20:2 for DPPC: Cholesterol: PEG was determined as the optimum formulation of the liposome structure with high drug encapsulation efficiency (98%) and optimum drug release rate (the drug release rate was 40%, 65%, and 83% after 24, 48, and 72h, respectively). MTT assay results showed an improvement in endothelial cell proliferation in the presence of nano-liposomal sodium nitrite (LNS) at the concentration of 0.5μg/mL. Using a suitable concentration of liposomal sodium nitrite (0.5μg/mL) put onto the constructed scaffold resulted in the controllable development of smooth muscle cells in the experiment. The culture of smooth muscle cells in a pulsatile perfusion bioreactor indicated that in the presence of synthesized liposomal sodium nitrite, the overgrowth of smooth muscle cells was inhibited in dynamic cell culture conditions. The mechanical properties of ECM graft were measured, and a multi-scale model with an accuracy of 83% was proposed to predict mechanical properties successfully. The liposomal drug-loaded small-diameter vascular graft can prevent the overgrowth of SMCs and the formation of intimal hyperplasia in the graft. Aside from that, the effect of LNS on endothelial has the potential to stimulate endothelial cell proliferation and re-endothelialization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call