Abstract
Parametric instability of a rotating truncated conical shell subjected to periodic axial loads is studied in the paper. Through deriving accurate expressions of inertial force and initial hoop tension, a rotating conical shell model is presented based upon the Love's thin shell theory. Considering the periodic axial loads, equations of motion of the system with periodic stiffness coefficients are obtained utilizing the generalized differential quadrature (GDQ) method. Hill's method is introduced for parametric instability analysis. Primary instability regions for various natural modes are computed. Effects of rotational speed, constant axial load, cone angle and other geometrical parameters on the location and width of various instability regions are examined.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have