Abstract

Parametric instability (PI), induced by the interaction between the cavity optical modes and acoustic modes of a mirror, is an inherent risk in interferometric gravitational wave detectors. The instability can result in exponential growth in acoustic mode amplitude and the saturation of detectors control systems. In this paper we analyse PI in the neutron star extreme matter observatory, a proposed high optical power (4.5 MW) detector, operating at cryogenic temperatures with silicon test masses (TMs), targeting high sensitivity between 1 and 4 kHz. Our results show that with current design parameters, approximately 16 unstable modes will arise per TM with maximum parametric gain ∼10. Varying the TM radius of curvature from the nominal values could eliminate PI, however not with current manufacture or actuator capability. PI mitigation will be required to suppress all unstable modes. This analysis identifies four optical modes and 16 acoustic modes dominating PI in NEMO paves the way for the design of PI mitigation strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.