Abstract

This paper treats the classical problem of radial motions of cylindrical and sphericalshells under pulsating pressures. The novelty in this work is that the shells are taken to be non-linearly viscoelastic(of strain-rate type). It is remarkable that this classical problem, which does not treat the loss of stability to non-radial motions (but which is essential for such treatments), has such a rich dynamics due to the often neglected effects of non-linear material response, to the role of prestress under the action of the mean pressure, and to the different effects of pressure on cylindrical and spherical shells. The study of radial motions near primary resonance (when the frequency of the pulsating pressure is near the natural frequency about an equilibrium state under a constant pressure) gives formulas ensuring that the motions are of hardening or softening type depending on the constitutive functions and whether the constant mean pressure is compressive or inflational. The method of multiple scales gives asymptoticformulas for the principal parametric instability regions (Mathieu tongues) and for the stable and unstable motions at twice the forcing frequency, which closely agree with those obtained by numerical continuation methods. The dependence of frequency on amplitude and the form of instability regions are critically influenced by deviations (even very slight deviations) of material response from that of linearly viscoelasticshells, by the constant mean pressure, and by the type of shell. This paper exhibits the rich diversity of postcritical periodic motions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.