Abstract
This study presents the development of an isothermal model for characterising the stress-strain behaviour of clay, in the framework of thermomechanical restrictions. Clay is assumed to be a decoupled material, where the accumulation of the Helmholtz free energy can be decoupled into two components, elastic and plastic, that result in the explicit definitions of the shift and dissipative stress tensors, respectively. An anisotropic yielding function fulfilling the first and second laws of thermodynamics is then derived from the rate of plastic dissipation, where the loading tensor and fractional plastic flow tensor are also obtained. A compression-and-shearing hardening mechanism is introduced by further evaluating the thermodynamic restrictions of the rate of Helmholtz free energy at critical state. The developed model contains seven constitutive parameters, where the identification methods are discussed. Finally, an application of the developed model to simulate the drained and undrained stress-strain responses of different clays are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.