Abstract

Total-body dynamic positron emission tomography/computed tomography (PET/CT) provides much sensitivity for clinical imaging and research, bringing new opportunities and challenges regarding the generation of total-body parametric images. This study investigated parametric [Formula: see text] images directly generated from static PET images without an image-derived input function on a 2-m total-body PET/CT scanner (uEXPLORER) using a deep learning model to significantly reduce the dynamic scanning time and improve patient comfort. [Formula: see text]F-Fluorodeoxyglucose ([Formula: see text]F-FDG) 2-m total-body PET/CT image pairs were acquired for 200 patients (scanned once) with two protocols: one parametric PET image (60 min, 0[Formula: see text]60 min) and one static PET image (10 min, range of 50[Formula: see text]60 min). A deep learning model was implemented to predict parametric [Formula: see text] images from the static PET images. Evaluation metrics, including the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and normalized mean square error (NMSE), were calculated for a 10-fold cross-validation assessment. Moreover, image quality was assessed by two nuclear medicine physicians in terms of clinical readings. The synthetic parametric PET images were qualitatively and quantitatively consistent with the reference images. In particular, the global mean SSIM between the synthetic and reference parametric [Formula: see text] images exceeded 0.9 across all test patients. On the other hand, the overall subjective quality of the synthetic parametric PET images was 4.00 ± 0.45 (the highest possible rating is 5) according to the two expert nuclear medicine physicians. The findings illustrated the feasibility of the proposed technique and its potential to reduce the required scanning duration for 2-m total-body dynamic PET/CT systems. Moreover, this study explored the potential of direct parametric image generation with uEXPLORER. Deep learning technologies may output high-quality synthetic parametric images, and the validation of clinical applications and the interpretability of network models still need further research in future works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.