Abstract

Reinforced concrete slabs are an essential part of high-rise structures and are designed to withstand the loads to which they are subjected. However, concrete slabs may fail due to punching shear, which is one of the greatest risks they face. This type of failure, hard to predict, befalls almost instantaneously and may lead to catastrophic consequences. In this paper, ABAQUS is used to analyse a series of non-linear numerical models to simulate the punching shear effect on reinforced bolt-retrofitted concrete flat slabs whose bolts are arranged in three different positions around the support. To start with, an initial calibration of a finite element model was carried out with experimental results reported by Adetifa and Polak. Next, a parametric analysis was performed to determine the influence of the retrofitting geometrical parameters. For this purpose, over two hundred models were created with the help of an automation algorithm programmed in Python. Our parametric study shows that a shear-bolt radial layout may be most adequate for retrofitting slab-to-column connections in which the phenomenon of punching shear is likely to occur. Moreover, the distance between the first pair of bolts and the column’s face is recommended to be approximately five times the diameter of the shear bolts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.