Abstract
Fracture and effective stress–strain graphs in two-dimensional random composites subjected to a uni-axial in-plane uniform strain are characterized. The inclusions are arranged randomly in the matrix. Both inclusions and matrix are isotropic and elastic-brittle. We conduct this analysis numerically using a very fine two-dimensional triangular spring network and simulate the crack initiation and propagation by sequentially removing of the bonds, which exceed a local fracture criterion. In particular, the focus of this paper is on effects of scale (size of inclusion) and geometric randomness in such composites. We consider several “windows of observation” (scales) and study crack patterns, types of constitutive responses, and statistics of the corresponding scale-dependent effective elastic stiffness and strength of such composites. Parametric study is conducted to cover a wide range of material combinations defined by the stiffness ratio and the strain-to-failure ratio and a damage plane in terms of these two parameters to illustrate the results is employed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.