Abstract

Methanol is currently considered a promising alternative fuel for energy de-fossilization due to its simplicity and adequacy for renewable production. This study investigates the feasibility of using neat methanol in high-efficiency compression ignition engines, with a focus on its potential to reduce CO2 emissions compared to conventional diesel. However, achieving efficient combustion of neat methanol in compression ignition engines presents challenges due to its low ignition capability, requiring higher compression ratios, intake temperatures, and pressures than diesel for autoignition. Furthermore, the high latent heat of vaporization contributes to significant cycle-to-cycle combustion variability. This work evaluates the combustion characteristics of neat methanol in a light-duty multi-cylinder compression ignition engine with a 19:1 compression ratio, examining its suitability for commercial applications. Performance indicators such as engine efficiency, fuel consumption, and engine-out pollutant emissions are assessed. The findings contribute to advancing research and implementation of methanol fuel as an energy source for internal combustion engine vehicles, addressing both the advantages of the fuel and the challenges that need to be overcome, particularly with respect to its low auto-ignition characteristics. Notably, despite methanol's lower energy density compared to diesel, the achieved combustion efficiency is comparable, with remarkable improvements in NOx and soot emissions trade-off.The study reveals that neat methanol combustion poses difficulties, especially at low loads, speeds, and during engine startup, due to its high ignition energy requirement and long ignition delay. Even with modifications such as increased compression ratio, and the addition of intake heaters and glow plugs, sustaining combustion at low load conditions remains a challenge. However, once the engine is warmed up, methanol combustion can be sustained at medium to high loads without additional heating accessories, although the use of such accessories improves combustion stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call