Abstract

This paper gives a treatment of substitution for “parametric” objects in final coalgebras, and also presents principles of definition by corecursion for such objects. The substitution results are coalgebraic versions of well-known consequences of initiality, and the work on corecursion is a general formulation which allows one to specify elements of final coalgebras using systems of equations. One source of our results is the theory of hypersets, and at the end of this paper we sketch a development of that theory which calls upon the general work of this paper to a very large extent and particular facts of elementary set theory to a much smaller extent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.