Abstract
Electrical discharge machining (EDM) is one of the earliest non-traditional machining processes. EDM process is based on thermoelectric energy between the work piece and an electrode. There are various types of products which can be produced by using the EDM such as dies and moulds. Today many parts used in aerospace and automotive industry and also final processes of surgical components can be finished by EDM process. A simple and easily understandable model was proposed for predicting the relative importance of different factors (composition of the steels and Electro Discharge Machining processing conditions) in order to obtain an efficient pieces. A detail application on the tool steels machined by EDM was given in this study. This model is based on thermal, metallurgical and mechanical and also in situ test conditions. It gives detail information on the effect of electrochemical parameters on the surface integrity and sub-surface damage of the material (Heat Affected Zone, HAZ), the level of residual stresses, and the surface texture. This approach is an efficient way to separate the responsibilities of the steel maker and machining process designer for increasing the reliability of the machined structures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have