Abstract
This work presents a comparison between parametric and nonparametric localization methods for autonomous underwater vehicles based on two classes of Bayesian filters for sensor fusion: the Particle Filter and the Extended Kalman Filter. In order to develop a localization method that does not require external sensors, the terrain-based localization technique is studied, which uses the particle filter and bathymetric information regarding the terrain. While promising, this approach has poor precision in regions with small depth variations. In order to improve this methodology, two solutions are presented: a software-based solution which uses a trajectory generation algorithm that limits the vehicle navigation to regions of the map with large depth variation, and a hardware-based solution which uses GPS intelligent buoy sensors. In order to analyze the convergence performance of the terrain-based localization with the trajectory generation algorithm, Monte Carlo simulations are performed with different quantities of particles. For comparison purposes, an Extended Kalman Filter fusing an inertial measurement unit and GPS intelligent buoys are also analyzed. Simulation results show that the triangulation-based approach achieves an improved performance, at the cost of extra sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Control, Automation and Electrical Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.