Abstract

This article presents a mathematical model to calculate the cost and production of electrical energy of a system that combines energy storage through renewable sources such as wind and solar energy, applying a theoretical framework of mathematical aspects to evaluate a pumped storage system with Pelton turbines, using a novel methodology, easy to replicate. The results show that a greater increase in the diameter in the pipe of the pumping equipment reduces the electrical power supplied to the pump. On the other hand, the hydraulic losses in the pipe leading to the Pelton turbine are negligible for long lengths, so setting the maximum length instead of a variable-length with the hydraulic height does not affect the result. Finally, the information and explanation of each of the graphs that correlate to the variables of interest are shown. This seeks to offer a contribution to support technological development in areas that do not have electricity, taking advantage of natural resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.