Abstract

A fundamental understanding of the process parameters affecting the catalytic hydrodeoxygenation (HDO) of bio-oils is of significance for enabling further progression and improvement of industrial biofuel upgrading methods. Herein, a novel demonstration and evaluation of the effect of temperature, pressure, and weight hourly space velocity in the continuous HDO of vanillin to cresol over a Ni-Mo/δ-Al2O3 catalyst are presented. Response surface methodology was used as a statistical experimental design method, and the application of central composite design enabled the generation of a statistically significant simulation model and a true optimization parametric study. The distribution of Ni and Mo on δ-Al2O3 was confirmed using scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). No gradients with EDX mapping could be identified, and the elemental analysis showed well-dispersion of the metals. The mesoporous character of the catalyst-support system was unraveled using N2 physisorption. Experiments were conducted within the parametric range of 250–350 °C, 3–9 bar, and 15–35 h−1. Both temperature and pressure were found to have statistically significant linear and quadratic effects on the selectivity for cresol. The parametric interaction of temperature with pressure and space velocity also had a significant effect on the resulting response. The optimal temperature range becomes more critical at lower space velocities. Optimal selectivity for cresol was established at 314 °C, 5 bar, and 35 h−1. The fitting quality of the generated regression model was statistically confirmed and experimentally validated to describe the specified HDO process within the 95% two-sided confidence interval.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.