Abstract

In this paper, the parametric matrix equation A(p)X = B(p) whose elements are linear functions of uncertain parameters varying within intervals are considered. In this matrix equation A(p) and B(p) are known m-by-m and m-by-n matrices respectively, and X is the m-by-n unknown matrix. We discuss the so-called AE-solution sets for such systems and give some analytical characterizations for the AE-solution sets and a sufficient condition under which these solution sets are bounded. We then propose a modification of Krawczyk operator for parametric systems which causes reduction of the computational complexity of obtaining an outer estimation for the parametric united solution set, considerably. Then we give a generalization of the Bauer-Skeel and the Hansen-Bliek-Rohn bounds for enclosing the parametric united solution set which also enables us to reduce the computational complexity, significantly. Also some numerical approaches based on Gaussian elimination and Gauss-Seidel methods to find outer estimations for the parametric united solution set are given. Finally, some numerical experiments are given to illustrate the performance of the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.