Abstract
We consider systems of linear equations, where the elements of the matrix and of the right-hand side vector are linear functions of interval parameters. We study parametric AE solution sets, which are defined by universally and existentially quantified parameters, and the former precede the latter. Based on a recently obtained explicit description of such solution sets, we present three approaches for obtaining outer estimations of parametric AE solution sets. The first approach intersects inclusions of parametric united solution sets for all combinations of the end-points of the universally quantified parameters. Polynomially computable outer bounds for parametric AE solution sets are obtained by parametric AE generalization of a single-step Bauer---Skeel method. In the special case of parametric tolerable solution sets, we derive an enclosure based on linear programming approach; this enclosure is optimal under some assumption. The application of these approaches to parametric tolerable and controllable solution sets is discussed. Numerical examples accompanied by graphic representations illustrate the solution sets and properties of the methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.