Abstract

Current-voltage (I-V) characteristics of CH3NH3PbI3 perovskite solar cells are studied using a time-dependent current response with stepwise sweeping of the bias voltage. Compared with the crystalline Si solar cell showing time-independent current at a given bias voltage, the perovskite solar cells exhibit time-dependent current response. The current increases with time and becomes steady at forward scan from short-circuit to open-circuit, whereas it is decayed and saturated with time at reverse scan from open-circuit to short-circuit. Time-dependent current response eventually leads to I-V hysteresis depending on the scan direction and the scan rate. Crystal size of CH3NH3PbI3 and the mesoporous TiO2 (mp-TiO2) film are found to influence I-V hysteresis, where the I-V hysteresis is alleviated as crystal size increases and in the presence of mp-TiO2. The capacitance observed at low frequency (0.1 to 1 Hz), associated with dipole polarization, tends to diminish as size of perovskite and mp-TiO2 layer thickness increases, which suggests that the origin of hysteresis correlates to the capacitive characteristic of CH3NH3PbI3 and the degree of hysteresis depends strongly on perovskite crystal size and mesoporous TiO2 layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.