Abstract
ABSTRACTThis paper presents an amendment of an existing three-dimensional hydro-environmental model (Environmental Fluid Dynamics Code) to incorporate effects of suspended canopies on the vertical flow structure. Five different modelling approaches are investigated, encompassing hydrodynamic form drag imparted by the suspended canopy, an amended two-equation turbulence scheme representing turbulence generated locally by elements within the canopy, and three separate formulations for vertical profiles of drag coefficients. Data from laboratory experiments with rigid cylinders are used to validate the calculations of velocity and shear stresses. The results show that the most accurate reproduction of the canopy flow was obtained using a vertically varying drag coefficient along with a two-equation turbulence closure scheme that includes additional turbulence production and dissipation terms. The numerical model reproduced velocity profiles accurately, but the shear stresses are slightly overestimated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.