Abstract

Parameterized runtime analysis seeks to understand the influence of problem structure on algorithmic runtime. In this paper, we contribute to the theoretical understanding of evolutionary algorithms and carry out a parameterized analysis of evolutionary algorithms for the Euclidean traveling salesperson problem (Euclidean TSP). We investigate the structural properties in TSP instances that influence the optimization process of evolutionary algorithms and use this information to bound their runtime. We analyze the runtime in dependence of the number of inner points k. In the first part of the paper, we study a [Formula: see text] EA in a strictly black box setting and show that it can solve the Euclidean TSP in expected time [Formula: see text] where A is a function of the minimum angle [Formula: see text] between any three points. Based on insights provided by the analysis, we improve this upper bound by introducing a mixed mutation strategy that incorporates both 2-opt moves and permutation jumps. This strategy improves the upper bound to [Formula: see text]. In the second part of the paper, we use the information gained in the analysis to incorporate domain knowledge to design two fixed-parameter tractable (FPT) evolutionary algorithms for the planar Euclidean TSP. We first develop a [Formula: see text] EA based on an analysis by M. Theile, 2009, "Exact solutions to the traveling salesperson problem by a population-based evolutionary algorithm," Lecture notes in computer science, Vol. 5482 (pp. 145-155), that solves the TSP with k inner points in [Formula: see text] generations with probability [Formula: see text]. We then design a [Formula: see text] EA that incorporates a dynamic programming step into the fitness evaluation. We prove that a variant of this evolutionary algorithm using 2-opt mutation solves the problem after [Formula: see text] steps in expectation with a cost of [Formula: see text] for each fitness evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.