Abstract

We study the parameterized complexity of the classical Edge Hamiltonian Path problem and give several fixed-parameter tractability results. First, we settle an open question of Demaine et al. (2014) by showing that Edge Hamiltonian Path is FPT parameterized by vertex cover, and that it also admits a cubic kernel. We then show fixed-parameter tractability even for a generalization of the problem to arbitrary hypergraphs, parameterized by the size of a (supplied) hitting set. As an interesting consequence, we show that this implies an FPT algorithm for (Vertex) Hamiltonian Path parameterized by (vertex) clique cover. We also consider the problem parameterized by treewidth or clique-width. Surprisingly, we show that the problem is FPT for both of these standard parameters, in contrast to its vertex version, which is W[1]-hard for clique-width. Our technique, which may be of independent interest, relies on a structural characterization of clique-width in terms of treewidth and complete bipartite subgraphs due to Gurski and Wanke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.