Abstract
We introduce a dynamic version of the NP-hard graph modification problem Cluster Editing. The essential point here is to take into account dynamically evolving input graphs: having a cluster graph (that is, a disjoint union of cliques) constituting a solution for a first input graph, can we cost-efficiently transform it into a “similar” cluster graph that is a solution for a second (“subsequent”) input graph? This model is motivated by several application scenarios, including incremental clustering, the search for compromise clusterings, or also local search in graph-based data clustering. We thoroughly study six problem variants (three modification scenarios edge editing, edge deletion, edge insertion; each combined with two distance measures between cluster graphs). We obtain both fixed-parameter tractability as well as (parameterized) hardness results, thus (except for three open questions) providing a fairly complete picture of the parameterized computational complexity landscape under the two perhaps most natural parameterizations: the distances of the new “similar” cluster graph to (1) the second input graph and to (2) the input cluster graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.