Abstract

In the Categorical Clustering problem, we are given a set of vectors (matrix) A={a1,…,an} over Σm, where Σ is a finite alphabet, and integers k and B. The task is to partition A into k clusters such that the median objective of the clustering in the Hamming norm is at most B. Fomin, Golovach, and Panolan [ICALP 2018] proved that the problem is fixed-parameter tractable for the binary case Σ={0,1}. We extend this algorithmic result to a popular capacitated clustering model, where in addition the sizes of the clusters are lower and upper bounded by integer parameters p and q, respectively. Our main theorem is that the problem is solvable in time 2O(Blog⁡B)|Σ|B⋅(mn)O(1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.