Abstract

Although it is clinically important, a reliable and economical solution to automatic seizure detection for patients at home is yet to be developed. Traditional algorithms rely on multi-channel EEG signals and features of canonical EEG power description. This study is aimed to propose an effective single-channel EEG seizure detection method centered on novel EEG power parameterization and channel selection algorithms.We employed the publicly available multi-channel CHB-MIT Scalp EEG database to gauge the effectiveness of our approach. We first adapted a power spectra parameterization algorithm to characterize the aperiodic and periodic components of the ictal and inter-ictal EEGs. We selected four features based on their statistical significance and interpretability, and developed a ranking approach to channel selection for each patient. We then tested the effectiveness of our approaches to channel and feature selection for automatic seizure detection using support vector machine (SVM) as the classifier. The performance of our algorithm was evaluated using five-fold cross-validation and compared to those methods of comparable complexity (using one or two channels of EEG), in terms of accuracy, specificity, sensitivity, precision and F1 score.Some channels of EEG signals show strikingly different distributions of PSD features between the ictal and inter-ictal states. Four features including the offset and exponent parameters for the aperiodic component and the first and second highest total power (TPW1 and TPW2) form the basis of channel selection and the input of SVM classifier. The selected channel is found to be patient-specific. Our approach has achieved a mean sensitivity of 95.6%, specificity of 99.2%, accuracy of 98.6%, precision of 95.5%, and F1 score of 95.5%. Compared with algorithms in previous studies that used one or two channels of EEG signals, ours outperforms in specificity and accuracy with comparable sensitivity.EEG power spectra parameterization to feature extraction and feature ranking-based channel selection are found to enable efficient and effective automatic seizure detection based on single-channel EEG signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.