Abstract

Abstract Development of accurate planetary boundary layer (PBL) parameterizations in high-wind conditions is crucial for improving tropical cyclone (TC) forecasts. Given that eddy-diffusivity mass-flux (EDMF)-type PBL schemes are designed for nonhurricane boundary layers, this study examines the uncertainty of MF parameterizations in hurricane conditions by performing three-dimensional idealized simulations. Results show that the surface-driven MF plays a dominant role in the nonlocal turbulent fluxes and is comparable to the magnitude of downgradient momentum fluxes in the middle portion of TC boundary layers outside the radius of maximum wind (RMW); in contrast, the stratocumulus-top-driven MF is comparably negligible and exerts a marginal impact on TC simulations. To represent the impact of vertical wind shear on damping rising thermal plumes, a new approach of tapering surface-driven MF based on the surface stability parameter is proposed, aiming to retain the surface-driven MF only in unstable boundary layers. Compared to a traditional approach of MF tapering based on 10-m wind speeds, the new approach is physically more appealing as both shear and buoyancy forcings are considered and the width of the effective zone responds to diurnal variations of surface buoyancy forcing. Compared to the experiments retaining the original MF components, using either approach of MF tapering can lead to a stronger and more compact inner core due to enhanced boundary layer inflow outside the RMW; nevertheless, the radius of gale-force wind and inflow layer depth are only notably reduced using the new approach. Comparison to observations and further discussions on MF parameterizations in high-wind conditions are provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call