Abstract
A 1-bridge torus knot in a 3-manifold of genus ≤ 1 is a knot drawn on a Heegaard torus with one bridge. We give two types of normal forms to parameterize the family of 1-bridge torus knots that are similar to the Schubert's normal form and the Conway's normal form for 2-bridge knots. For a given Schubert's normal form we give algorithms to determine the number of components and to compute the fundamental group of the complement when the normal form determines a knot. We also give a description of the double branched cover of an ambient 3-manifold branched along a 1-bridge torus knot by using its Conway's normal form and obtain an explicit formula for the first homology of the double cover.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.