Abstract

The dynamics and parameterization of mixing in temporally evolving turbulent open-channel flow is investigated through direct numerical simulations as the flow transitions from an initially neutral state to stable stratification. We observe three distinctly different mixing regimes separated by transitional values of turbulent Froude number $Fr$ : a weakly stratified regime for $Fr >1$ ; an intermediate regime for $0.3< Fr<1$ ; and a saturated regime for $Fr<0.3$ . The mixing coefficient $\varGamma =B/\epsilon _K$ , (where $B$ is the buoyancy flux and $\epsilon _K$ is the dissipation rate of kinetic energy), is well predicted by the parameterization schemes of Maffioli et al. (J. Fluid Mech., vol. 794, 2016) and Garanaik & Venayagamoorthy (J. Fluid Mech., vol. 867, 2019, pp. 323–333) across all three regimes through instantaneous measurements of $Fr$ and the ratio $L_E/L_O$ , where $L_E$ and $L_O$ are the Ellison and Ozmidov length scales, respectively. The flux Richardson number $R_f = B/(B+\epsilon _K)$ shows linear dependence on the gradient Richardson number $Ri_g$ up to a transitional value of $Ri_g =0.25$ , past which it saturates again to a constant value independent of $Fr$ or $Ri_g$ . By examining the flow as a balance of inertial, shear and buoyancy forces, we derive physically based scaling relationships to demonstrate that $Ri_g \sim Fr^{-2}$ and $Ri_g \sim Fr^{-1}$ in the weakly and moderately stratified regimes and that $Ri_g$ becomes independent of $Fr$ in the saturated regime. Our results suggest that the $L_E/L_O \sim Fr^{-1}$ scaling of Garanaik & Venayagamoorthy (J. Fluid Mech., vol. 867, 2019, pp. 323–333) in the intermediate regime manifests due to the influence of mean shear. The differences in the relationships between $Fr$ and $L_E/L_O$ for non-sheared flows within this regime are discussed.

Highlights

  • Due to the ubiquity of geophysical turbulent flows under the effect of stable density stratification, investigation into the mechanisms and accurate quantification of diapycnal mixing has been and remains a fundamental area of research within the stratified turbulence community

  • In this study we have investigated temporally evolving stratified open channel flow through direct numerical simulation (DNS) as the flow transitions from a neutral to a stably stratified state, with the emphasis of the study being on the parameterization of mixing across varying energetic regimes within stratified channel flow and the subsequent analysis of the relationship between the relevant non-dimensional mixing diagnostics

  • We find that after an initial transient adjustment period of approximately one eddy turnover time unit (t ≈ 1), the turbulent flow within the channel is distinctly divided into weakly stratified, moderately stratified and saturated mixing regimes separated by transitional values of Fr = 1 and Fr = 0.3 across all simulations

Read more

Summary

Introduction

Due to the ubiquity of geophysical turbulent flows under the effect of stable density stratification, investigation into the mechanisms and accurate quantification of diapycnal mixing has been and remains a fundamental area of research within the stratified turbulence community. The emphasis of our study falls on two key ideas: the accurate parameterization of mixing efficiency in the context of our spatiotemporally inhomogeneous flow; and a robust investigation into the dynamics and relationship between key non-dimensional parameters within the varying flow regimes. Central to the quantification and estimation of mixing in stratified flows are the diapycnal diffusivity KP and the mixing efficiency coefficient Γ , which are linked through the relation

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call