Abstract
This article describes the comparison of three different classification algorithms for mapping crops in Hokkaido, Japan, using TerraSAR-X data. In the study area, beans, beets, grasslands, maize, potatoes, and winter wheat were cultivated. Although classification maps are required for both management and estimation of agricultural disaster compensation, those techniques have yet to be established. Some supervised learning models may allow accurate classification. Therefore, comparisons among the classification and regression tree (CART), the support vector machine (SVM), and random forests (RF) were performed. SVM was the optimum algorithm in this study, achieving an overall accuracy of 89.1% for the same-year classification, which is the classification using the training data in 2009 to classify the test data in 2009, and 78.0% for the cross-year classification, which is the classification using the training data in 2009 to classify the data in 2012.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have