Abstract
An Ion Field Effect Transistor (IFET) with nanopore structure was modeled in a conventional 3-dimensional (3-D) device simulator to understand current-voltage (I-V) characteristics and underlying physics of the device. Since the nanopore was filled with positive ions (K+) ions due to the negative interface charge on the insulator surface and negative gate bias condition, we could successfully simulate the IFET structure using modified p-type silicon to mimic KCl solution. We used p-type silicon with a doping concentration of 6.022 x 10(16) cm(-3) which has the same concentration of positive carriers (hole) as in 10(-4) M KCl. By controlling gate electric field effect on the mobility, the I-V curves obtained by the parameter modeling matched very well with the measured data. In addition, the decrease of [V(th)] with increasing V(DS) was physically analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.