Abstract
We derive and experimentally test an algorithm for maximum likelihood estimation of parameters in stochastic differential equations (SDEs). Our innovation is to efficiently compute the transition densities that form the log likelihood and its gradient, and to then couple these computations with quasi-Newton optimization methods to obtain maximum likelihood estimates. We compute transition densities by applying quadrature to the Chapman–Kolmogorov equation associated with a time discretization of the original SDE. To study the properties of our algorithm, we run a series of tests involving both linear and nonlinear SDE. We show that our algorithm is capable of accurate inference, and that its performance depends in a logical way on problem and algorithm parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.