Abstract
A memristor is a non-linear element. The chaotic system constructed by it can improve its unpredictability and complexity. Parameter identification of a memristive chaotic system is the primary task to implement chaos control and synchronization. To identify the unknown parameters accurately and quickly, we introduce the Sine Pareto Sparrow Search Algorithm (SPSSA), a modified sparrow search algorithm (SSA). in this research. Firstly, we introduce the Pareto distribution to alter the scroungers’ location in the SSA. Secondly, we use a sine-cosine strategy to improve the producers’ position update. These measures can effectively accelerate the convergence speed and avoid local optimization. Thirdly, the SPSSA is used to identify the parameters of a memristive chaotic system. The proposed SPSSA exceeds the classic SSA, particle swarm optimization algorithm (PSO), and artificial bee colony algorithm (ABC) in simulations based on the five benchmark functions. The simulation results of parameter identification of a memristive chaotic system show that the method is feasible, and the algorithm has a fast convergence speed and high estimation accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.