Abstract

The current article intends to study some elementary constrained approximation aspects of the bivariate fractal functions. To this end, firstly the construction of bivariate fractal interpolation functions available in the literature is revisited with a focus to obtain a parameterized family of fractal functions corresponding to a prescribed bivariate continuous function on a rectangular region in The parameters are chosen appropriately so that the corresponding fractal version preserves some properties inherent in the original function. We apply these results to invite the notion of bivariate fractal functions to the field of constrained approximation. Furthermore, we attempt to investigate the box dimension and Hausdorff dimension of the graph of the constructed bivariate fractal function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.