Abstract
Since fractal functions are widely applied in dynamic systems and physics such as fractal growth and fractal antennas, this paper concerns fundamental problems of fractal continuous functions like cardinality of collection of fractal functions, box dimension of summation of fractal functions, and fractal linear space. After verifying that the cardinality of fractal continuous functions is the second category by Baire theory, we investigate the box dimension of sum of fractal continuous functions so as to discuss fractal linear space under fractal dimension. It is proved that the collection of 1-dimensional fractal continuous functions is a fractal linear space under usual addition and scale multiplication of functions. Particularly, it is revealed that the fractal function with the largest box dimension in the summation represents a fractal dimensional character whenever the other box dimension of functions exist or not. Simply speaking, the fractal function with the largest box dimension can absorb the other fractal features of functions in the summation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.