Abstract

Atom probe tomography enables precise quantification of the composition of second phase particles from their early stages, leading to improved understanding of the thermodynamic and kinetic mechanisms of phase formation and quantify structure-property relationships. Here we demonstrate how approaches developed for small-angle scattering can be adapted to atom probe tomography. By exploiting nearest-neighbor distributions and radial distribution function, we introduce a parameter free methodology to efficiently extract information such as particle size, composition, volume fraction, number density and inter-particle distance. We demonstrate the strength of this approach in the analysis of a precipitation-hardened model Al-Zn-Mg-Cu high-strength lightweight alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.